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Abstract If � is an irreducible non-uniform higher-rank characteristic zero
arithmetic lattice (for example SLn(Z), n ≥ 3) and � is a finitely generated
group that is elementarily equivalent to �, then � is isomorphic to �.

1 Introduction

In this article, we state and prove a new rigidity result for irreducible non-
uniform higher-rank arithmetic lattices. This class includes the groups SLn(Z)

for n ≥ 3 and SLn(Z[1/p]) for n, p ≥ 2.
We recall the definitions. A lattice in a locally compact, second countable

group G is a discrete subgroup � ⊂ G such that there is a fundamental
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220 N. Avni et al.

domain with finite Haar measure for the translation action of � onG. A lattice
is called uniform ifG/� is compact, and non-uniform otherwise. We say that
� is irreducible if, for every non-compact normal subgroupK �G, the closure
of the image of � in G/K is open.

In this paper, by a semisimple group we mean a locally compact group
G of the form

∏r
i=1 Gi (Fi ), where Fi are local fields of characteristic zero

and Gi are connected simple algebraic groups defined over Fi and Gi (Fi )
is non-compact for every 1 ≤ i ≤ r . We say that a semisimple group G
has higher-rank if

∑
rankFi Gi ≥ 2 and has low-rank otherwise. A group

which is an irreducible lattice in a semisimple group of higher-rank is called a
higher-rank lattice. By Mostow’s strong rigidity (see Theorem A on page 9 in
[20]), a group cannot be an irreducible lattice in both a semisimple higher-rank
group and a semisimple low-rank group, so being an irreducible lattice in a
higher-rank group is a property of �. For example, SLn(Z) is an irreducible
non-uniform lattice in SLn(R), n ≥ 2; it is a higher-rank lattice if n ≥ 3, while
SLn(Z[1/p]) is an irreducible non-uniform higher-rank lattice in SLn(R) ×
SLn(Qp) for any n, p ≥ 2.

Irreducible higher-rank lattices are very much related to arithmetic groups.
We recall the construction of the latter. Let k be a number fieldwith ring of inte-
gers O , let S be a finite set of places of k, containing all the archimedean ones,
and let OS := {x ∈ k | (∀v /∈ S) v(x) ≥ 0} be the ring of S-integers. Let G be
a connected group scheme over OS , and let Gk be the corresponding algebraic
group over k. Assume thatGk is absolutely simple and simply connected. Any
group which is abstractly commensurable to such G(OS) is called an arith-
metic group. Borel and Harish-Chandra [3] proved that the image (under the
diagonal embedding) of G(OS) in

∏
v∈S G(Kv) is an irreducible lattice and

so every arithmetic group is commensurable to an irreducible lattice in some
semisimple group. Conversely, Margulis’ Arithmeticity Theorem implies that
any irreducible higher-rank lattice is commensurable to an arithmetic group.
Note that even in the case G = ∏

v∈S G(Kv), the arithmetic group need not
be G(OS) but can have the form H(OT ) for a different algebraic group H
(possibly defined over a different field) and set of primes T .

Irreducible higher-rank lattices havemany remarkable properties. For exam-
ple, Margulis’s Superrigidity Theorem roughly says that � (as abstract group)
determines G and the embedding � ↪→ G up to automorphisms of G (see
Definition 4.1 for the accurate statement). Another amazing rigidity result for
these groups is the following (for a quick formulation, we assume that � is
non-uniform): If � is any finitely generated group which is quasi-isometric to
� (i.e., the Cayley graph of� is quasi-isometric to that of �), then, up to finite
index and finite normal subgroups, � and � are isomorphic, see [9] and the
reference therein.

123



First order rigidity of non-uniform higher rank 221

Themain goal of this paper is to show a new rigidity phenomenon for higher
rank arithmetic groups. For the formulation, we need the following definitions:

Definition 1.1 Two groups are said to be elementarily equivalent if every first
order sentence in the language of groups that holds in one also holds in the
other.

Elementary equivalence is a fairly weak equivalence relation: every infinite
group has an equivalent group of any infinite cardinality. From a group-
theoretic perspective, it is reasonable to restrict the discussion to finitely
generated groups. Luckily, characteristic zero arithmetic groups are always
finitely generated (in fact, finitely presented).

Definition 1.2 We say that a finitely generated group � is first order rigid (or
quasi-axiomatizable or QA for short) if every finitely generated group that is
elementarily equivalent to � is isomorphic to �.

Remark 1.3 The term quasi-axiomatizable was defined for the first time in
[21] and have been used in various papers in model theory (see Sect. 7 below).
We prefer the term first order rigid to put Theorem 1.4 below in line with the
various rigidity result for lattices in Lie groups described above.

Finitely generated abelian groups are first order rigid. Nilpotent groups
need not be first order rigid, but the elementary equivalence class of any finitely
generated nilpotent group contains only finitelymanyfinitely generated groups
(see Remark 6.2). In general, elementary equivalence classes can be infinite.
The celebrated work of Sela [28] (see also [13]) shows that all non-abelian free
groups are elementarily equivalent, and are also equivalent to the fundamental
groups of compact surfaces of genera at least two (free groups and fundamental
groups of surfaces are all arithmetic groups, but not of higher-rank).

Our main result says that the situation for higher-rank arithmetic groups is
very different. Recall that two groups are said to be abstractly commensurable
if they contain isomorphic finite index subgroups.

Theorem 1.4 Any group which is abstractly commensurable to an irreducible
non-uniform higher-rank lattice is first order rigid.

Remark 1.5 First order rigidity is, in general, not preserved under abstract
commensurability, see Sect. 6.

Remark 1.6 (1) Theorem 1.4 stands in a sharp contrast to lattices in low-rank
groups:

(a) By [29], all torsion-free lattices in SL2(R) are elementarily equivalent.
(b) By [29, Theorem 7.6], if � is torsion-free uniform lattice in a rank-one

group, then � is elementarily equivalent to � ∗ Fn for all n ≥ 1.
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(2) By [29, Proposition 7.1], two non-isomorphic uniform torsion-free lattices
in rank-one groups other than SL2(R) are never elementarily equivalent. We
do not know what happens for non-uniform lattices.

Remark 1.7 Asobserved by the referee, Theorem1.4 extends to groups that are
commensurable to products of irreducible non-uniform higher-rank arithmetic
groups.

The paper is organized as follows: Sect. 2 contains some preliminaries,
including the crucial definitions of a prime group and the Brenner property.
In the same section, we also show that SLn(Z) is prime and has an element
satisfying the Brenner property. In Sect. 3, we prove that a prime group with a
finite center that has an element with the Brenner property is first-order rigid.
This finishes the proof of rigidity for SLn(Z). In Sect. 4we show that superrigid
arithmetic groups are prime and in Sect. 5 we show that irreducible higher-
rank non-uniform lattices have elements with the Brenner property, finishing
the proof of Theorem 1.4. In Sect. 6 we show that first-order rigidity is, in
general, not preserved under commensurability. Finally, in Sect. 7 we discuss
some related model theoretic and group theoretic properties.
This article is dedicated to the memory Daniel G. Mostow who is the found-
ing father of modern rigidity. Dan was a role model and inspiration for us,
professionally and personally.

2 Preliminaries

The following is a theorem of Malcev.

Proposition 2.1 ([17]) If � is a group that is elementarily equivalent to a
linear group, then � is linear. If, in addition, � is finitely generated, then �

is residually finite.

Definition 2.2 A homomorphism f : � → � is called an elementary embed-
ding if, for every first order formula φ(�x) with n free variables and every
�a ∈ �n , the statement φ(�a) holds in � if and only if φ( f (�a)) holds in �.

Definition 2.3 We say that a group � is prime if, for every group � that is
elementary equivalent to �, there is an elementary embedding � ↪→ �.

The following is proved by Oger and Sabbagh:

Theorem 2.4 ([25]) Let � be a finitely generated group. The following are
equivalent:
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First order rigidity of non-uniform higher rank 223

(1) � is prime.
(2) There is a generating tuple �g ∈ �n and a formula φ(�x) such that, for any

n-tuple �h ∈ �n, the statement φ(�h) holds in � if and only if �h is in the
Aut(�) orbit of �g.

Example 2.5 SLn(Z), n ≥ 3, is prime: We use the following consequence of
superrigidity: Any endomorphism of SLn(Z) is either trivial or an automor-
phism.

Fix a finite presentation 〈g1, . . . , ga | r1, . . . , rb〉 of SLn(Z), and let
φ(x1, . . . , xa) be the formula

φ(�x) = (x1 �= 1) ∧
b∧

j=1

(r j (�x) = 1).

If �h ∈ (SLn(Z))a and φ(�h) holds, then the map gi �→ hi extends to a non-
trivial endomorphism of�, so it must be an automorphism, so �h is a generating
tuple.

Notation 2.6 For a set S ⊂ � and n ≥ 1, let [S]n = {g1 · · · gn | gi ∈ S ∪ {1}}.
Definition 2.7 We say that an element b ∈ � has the Brenner Property if
there exists a constant D ≥ 1 for which the following statement hold:

For every h ∈ �, if |[h� ∪ (h−1)�]D|
> D then [h� ∪ (h−1)�]D ∩ Z(C�(b)) �= {1} .

Remark 2.8 Let h ∈ � � Z(�) and denote S = h� ∪ (h−1)� . We claim that if
|[S]D| ≤ D for some D ≥ 1 then [S]D is the normal subgroup of � generated
by h, and in particular [S]D = [S]C for every C ≥ D. Indeed, since |S| > 1,
there is a natural number k < D such that [S]k = [S]k+1. By induction,
[S]k = [S]� for every � > k and hence [S]D = [S]k is a group.

Note that the claim implies that if h ∈ � is not contained in any finite normal
subgroup then |[S]D| > D for every D ≥ 1.

Let ei, j ∈ SLn(Z) be the elementary matrix with 1s on the diagonal and
entry (i, j) and zero elsewhere.

Lemma 2.9 ([6]) Let n ≥ 3. Then e1,n has the Brenner Property in SLn(Z).

Proof Denote � = SLn(Z). Since the center of G is finite it is enough to show
that there is a constant C such that for every h ∈ � \ Z(�), [h� ∪ (h−1)�]C ∩
Z(C�(e1,n)) �= {1}.
Let h ∈ � \ Z(�) and define S := h� ∪ (h−1)� . For every k ≥ 1, [S]k is a

symmetric normal subset. Thus, if t ∈ [S]k and q ∈ � then t� ∪(t−1)� ⊆ [S]k
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and [t, q] := tqt−1q−1 ∈ [S]2k . For a matrix t ∈ SLn(Q) let Vt := {v ∈ Q
n |

tv = v}. As SLn(Z) = 〈ei, j | 1 ≤ i �= j ≤ n〉, there exists 1 ≤ r �= s ≤ n
such that 1 �= h∗ := [er,s, h] ∈ [S]2. Since dim(Ver,s ) = dim(Vhe−1

r,s h−1) =
n − 1, we get n − 2 ≤ dim(Vh∗) ≤ n − 1. By the structure theorem of finitely
generated abelian groups, there exist 0 �= A ∈ Mn−2(Z) and B ∈ SL2(Z)

such that h is conjugate in SLn(Z) to

h∗∗ =
(
In−2 A
0 B

)

∈ [S]2.

By considering the cases B = ±I2 and B �= ±I2 separately, it is easy to see
that there exist 0 �= A′, A′′ ∈ Mn−2(Z) and B ′ ∈ SL2(Z) such that

1 �= h∗∗∗ :=
[(

In−2 A
0 B

)

,

(
In−2 A′
0 B ′

)]

=
(
In−2 A′′
0 I2

)

∈ [S]4.

If h∗∗∗ differs from the identity matrix only in the last column then h∗∗∗ is
conjugate to ek1,n for some k �= 0. Otherwise, h∗∗∗∗ := [h∗∗, en−1,n] ∈ [S]8
is a non-identity matrix which differs from the identity matrix only in the last
column. ��

3 Primeness and Brenner property imply first order rigidity

Recall that the FC-center of a group G is the collection of all finite conjugacy
classes. The FC-center of G is a characteristic subgroup which is denoted by
FC(G).

Proposition 3.1 Let � be a finitely generated group with finite FC-center.
Suppose that � is a finitely generated group, i : � → � is an elementary
embedding, and b ∈ �. Then

(1) i(FC(�)) = FC(�). In particular, any non-trivial finite normal sub-
group of � is contained in i(�).

(2) i(Z(C�(b))) = Z(C�(i(b))) ∩ i(�).
(3) If� is finitely presented or � is linear then, for every t ∈ �� {1}, there is

�t � � such that � = �t�i(�) and t /∈ �t . In particular, Z(C�(i(b)))
is the direct sum of Z(C�(i(b))) ∩ �t and i(Z(C�(b))).

Proof Identify � with its image in �. Let �g be a generating n-tuple of �. We
first show (1). Let FC(�) = {a1, . . . , am}. Let ψ(x) be the formula saying
that the conjugacy class of x has at most m elements. Since ψ(ai ) holds in �,
it holds in �, so FC(�) ⊂ FC(�). To show the converse, for every natural
number k, let ϕk(x1, . . . , xm) be the formula saying that, for any x different
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First order rigidity of non-uniform higher rank 225

from x1, . . . , xm , the conjugacy class of x has more than k elements. Since for
every k, ϕk(a1, . . . , am) holds in �, it holds in �, showing FC(�) ⊃ FC(�).

For every word w(�x), let νw(�x, y) be the first order formula saying that
w(�x) is in the center of the centralizer of y. If νw(�g, b) holds in �, then it
holds in �. This implies (2).

Finally we prove (3). In order to prove the first part of (3) it is enough
to find an epimorphism ϕt : � → � whose restriction to � is the identity
map and such that ϕt (t) �= 1 (since, in this case, � = ker(ϕt )��). Let
〈y1, . . . , ym | r1, . . .〉 be a presentation for �, and let �h := (h1, . . . , hm) be
a generating m-tuple of � corresponding to this presentation. If � is finitely
presented then there are only finitely many relations r1, . . . , rs and for everym
matrices l1, . . . , lm ∈ GLd(F) which satisfy these relations, the map hi �→ li
extends to a homomorphism from� to� . If� is linear, Hilbert’s basis theorem
implies that there exists a number s such that any m matrices l1, . . . , lm ∈
GLd(F) satisfying the relations r1, . . . , rs also satisfy the rest of the relations
ri , and, in particular, the map hi �→ li extends to a homomorphism. Let
w1(�x), . . . , wn(�x) be words such that gi = wi (�h) for every 1 ≤ i ≤ n, and let
u(�x) be a word such that t = u(�h). Let η(y1, . . . , ym, x1, . . . , xn) be the first
order formula which is the conjunction of

(1) �y satisfies r1, . . . , rs .
(2)

∧
1≤i≤n wi (�y) = xi .

(3) u(�y) �= 1.

The tuple �h is a testament that the formula (∃�y)η(�y, �g) holds in�. Hence, this
formula also holds in �. Let �k ∈ �m be such that η(�k, �g) holds. By the first
part of η, the map hi �→ ki extends to a homomorphism ϕt : � → �. By the
second part of the definition of η, ϕt (gi ) = ϕt (wi (�h)) = wi (�k) = gi for every
1 ≤ i ≤ n, so the restriction of ϕt to � is the identity map. By the third part
of the definition of η, ϕt (t) = ϕt (u(�h)) = u(�k) �= 1. The second part of (3)
follows from the first part and (2). ��
Remark 3.2 In this paper, the requirement that t /∈ �t in part (3) of Propo-
sition 3.1 does not play any role. This requirement becomes important when
dealing with the positive characteristic case and it is included here for future
reference.

Theorem 3.3 Let � be a finitely generated group. Assume that

(1) � is linear.
(2) FC(�) is finite.
(3) � is prime.
(4) b has the Brenner property in � and the Prufer rank of Z(C�(b)) is

finite (this means that there is a natural number k such that every finitely
generated subgroup of Z(C�(b)) is generated by k elements.)
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Then � is first order rigid.

Proof Let � be a finitely generated group that is elementarily equivalent to �.
Since � is prime, there is an elementary embedding i : � → �. As before,
we identify � with i(�). By Proposition 3.1(3) (with any non-trivial t), there
is a subgroup � � � such that � = ���. We will show that � = 1.

If there is a non-trivial element in�, the Brenner property of b, Remark 2.8,
part (1) of Proposition 3.1 and the normality of � imply that there is a
non-trivial element in � ∩ Z(C�(b)). Hence, it is enough to prove that
� ∩ Z(C�(b)) = {1}.

For an abelian group�, denote the set ofm-powers in� by Pm(�), and note
that this is a subgroup. Since every finitely generated subgroup of Z(C�(b)) is
generated by at most k elements, the group Z(C�(b))/Pm(Z(C�(b))) is finite.
Let dm be its size. There is a first order formula νm(x) that says that the quotient
of the center of the centralizer of x by the collection ofm-th powers of the cen-
ter of the centralizer of x has size dm . Since νm(b) holds in�, it also holds in�.
Hence, |Z(C�(b))/Pm(Z(C�(b)))| = |Z(C�(b))/Pm(Z(C�(b)))|. Proposi-
tion 3.1(3) implies that, for every m, Z(C�(b)) ∩ � = Pm(Z(C�(b)) ∩ �).
Hence, Z(C�(b)) ∩ � is divisible. By Proposition 2.1, � is linear. Since �

is finitely generated, it is residually finite. It follows that Z(C�(b)) ∩ � is a
divisible and residually finite group, thus, it is trivial. ��

Combining Theorem 3.3, Lemma 2.9, Example 2.5, and noting that
Z(CSLn(Z)(e1,n)) is the cyclic group generated by e1,n , we get

Corollary 3.4 If n ≥ 3, SLn(Z) is first order rigid.

4 Superrigid lattices are prime

In this section, we prove that superrigid lattices are prime. Recall our notation
that G, H, . . . denote algebraic groups and G,H, . . . denote locally compact
groups.

Definition 4.1 Asubgroup� of a locally compact groupG is called superrigid
if, for any simple adjoint algebraic group H defined over a local field L , any
homomorphism from � to H(L), whose image is unbounded and Zariski
dense, extends to a homomorphism from G to H(L).

There are many examples of superrigid subgroups:

Example 4.2 (1) By Theorem (2) in page 2 of [18], irreducible lattices in
higher-rank semisimple groups are superrigid.

(2) By [7] and [10], lattices in Sp(n, 1) and in F (−20)
4 are superrigid.

(3) In [2] there were given examples of groups which are superrigid but not
lattices.
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First order rigidity of non-uniform higher rank 227

Recall that a semisimple group is a locally compact group G =∏r
i=1 Gi (Fi ), where Fi are local fields of characteristic zero and Gi are con-

nected simple algebraic groups defined over Fi and Gi (Fi ) is non-compact
for every 1 ≤ i ≤ r . The purpose of this section is to prove the following:

Theorem 4.3 Let � be a group which is abstractly commensurable to an
irreducible lattice in higher-rank (characeterstic zero) semisimple group. Then
� is prime.

Some preparation is needed for the proof of Theorem 4.3 which is given
below.

Definition 4.4 Let f : G → H be a homomorphism between two locally
compact groups. We say that f is locally measure preserving if there is a
neighborhood 1 ∈ U ⊂ G such that f |U : U → f (U ) is ameasure preserving
homeomorphism.

Note that, if f : G → H is locally measure preserving and the restriction
of f to  ⊂ G is one-to-one, then f | is measure preserving.

Example 4.5 If G, H are semisimple algebraic groups defined over a local
field K and f : G → H is a central isogeny (i.e., f is surjective and ker( f )
is a finite subgroup of the center of G) with invertible derivative, then, up to
normalization of theHaarmeasures by constants, themap f : G(K ) → H(K )

is locally measure preserving.

Suppose that f : G → H is locally measure preserving and onto, and
let � ⊂ G be a discrete subgroup such that � ⊃ Ker( f ). If  ⊂ G is
a fundamental domain for � in G, then f () is a fundamental domain for
f (�) and f | :  → f () is one-to-one. It follows that the covolume of �

in G is equal to the covolume of f (�) in H.
We will use a theorem of Borel and Tits. In the following statement, if G

is an algebraic group over a field F , we denote by G+ the subgroup of G(F)

generated by the subgroupsU (F), whereU ranges over the unipotent radicals
of parabolic subgroups of G. If β : F → F ′ is a homomorphism of fields, we
denote the base change of G by β by βG.

Theorem 4.6 ([5], TheoremA) Let F, F ′ be fields. Let G and G ′ be absolutely
simple connected algebraic groups over F and F ′ respectively. Assume that
G ′ is adjoint and G+ is Zariski dense in G. Let f : G(F) → G ′(F ′) be a
homomorphismwith Zariski-dense image. Then there is a field homomorphism
β : F → F ′, an F ′-isogeny with invertible derivative φ : βG → G ′, and a
homomorphism γ : G(F) → Z(G ′(F ′)) such that f (g) = γ (g)φ(β(g)).

Remark 4.7 By the solution to the Knesser–Tits conjecture, if F is either a
local or a global field and G is F-isotropic, then G+ is Zariski dense in G.
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This implies also that Z(G(F)) = Z(G). We will only apply the theorem
under the assumption that F and F ′ are either local or global, so the condition
on G+ is always satisfied and Z(G ′(F ′)) = Z(G ′) = 1.

Theorem 4.8 Let G be a connected absolutely simple group over a number
field k, let S be a finite set of valuations, containing all archimedean ones.
Assume that every finite index subgroup of G(OS) is superrigid in

∏
v∈S G(kv).

Let � be a finite index subgroup of G(OS) and let ρ : � → G(OS) be a
homomorphism with infinite image. Then

(1) ker(ρ) is finite.
(2) If ρ is injective, then [G(OS) : �] = [G(OS) : ρ(�)]. In particular, if

ρ(�) ⊂ �, then ρ is an automorphism.

Proof Note first that it suffices to prove (1) and (2) for some finite index
subgroup of �, so we can replace � with a finite index subgroup whenever it
is needed.

Step 1 Since Z(G(OS)) is finite, by passing to a finite index subgroup of� we
may assume that�∩ Z(G(OS)) = 1.We can also assume that, for any
v ∈ S, � is unbounded in the valuation v (otherwise, after passing to
a finite index subgroup, � ⊂ G(OS�{v})). Denote G = ∏

v∈S G(kv),
and let δ : G(k) → G be the diagonal embedding.

Step 2 Let H = ρ(�)
Z
be the Zariski closure of the image of � and let H0 be

the connected component of identity. Since the image of ρ is infinite,
H0 is not trivial. Replace � with � ∩ H0 (and still call it �). There
is v ∈ S and a non-trivial adjoint k-factor q : H0 → K such that
q(ρ(�)) is unbounded in the valuation v.
Proof: Assume the contrary. Let q : H0 → K be an adjoint factor
defined over k, and choose a k-embedding K ↪→ GLn . Since q is
defined over k, the group q ◦ρ(�) is commensurable to a subgroup of
K (k)∩GLn(OS), so it is discrete in

∏
v∈S K (kv). Being pre-compact,

q ◦ρ(�) is finite. Since q ◦ρ(�) is also Zariski dense in the connected
group K , it follows that K is trivial. Since this holds for every adjoint
factor K , H0 is solvable. Thus, H0 has an infinite abelianization,
so � has a finite index subgroup with an infinite abelianization, a
contradiction to superrigidity.

Step 3 G = H = H0 and K = Gad . I.e., ρ(�) is Zariski dense.
Proof: Since q ◦ρ(�) is Zariski dense in K and unbounded in K (kv),
superrigidity implies that q ◦ρ extends to a map fv : G → K (kv), so,
in particular, there is w ∈ S and a non-trivial map fw,v : G(kw) →
K (kv). By Borel–Tits, there is a field homomorphism β = βw,v :
kw → kv and a non-trivial algebraic homomorphism φ : βG → K
such that fw,v is the composition of β : G(kw) → βG(kv) and φ.
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First order rigidity of non-uniform higher rank 229

Since βG is simple, dim K ≥ dim βG = dimG ≥ dim H0 ≥ dim K ,
so H0 is open in G. Since G is connected, we get that G = H0 = H
and K = Gad .

Step 4 ker(ρ) is finite.
Proof: In the last step we showed that fw,v(G(kw)) is Zariski dense in
K . Since K has trivial center, the image under fv of any other factor
of G is trivial. It follows that fv is the composition of the projection
G → G(kw) and fw,v . Hence, ρ is the composition of the embedding
� → G(kw) and fw,v . By Borel–Tits, fw,v is a composition of a
field homomorphism, which is necessarily injective, and a non-trivial
central isogeny, so the kernel of fw,v is finite.

Step 5 Let fv : G → Gad(kv) be the map constructed in Step 3. Then
fv(δ(G(k))) ⊂ Gad(k).
Proof: Denote the algebraic closure of kw by kw. Let g ∈ G(k), and
assume that fv(δ(g)) ∈ Gad(kw) � Gad(k) ⊂ Gad(kw) � Gad(k).
Then there is a field automorphism σ ∈ Gal(kw/k) such that
σ( fv(δ(g))) �= fv(δ(g)). Denote the conjugation by an element h
by ch . Since g ∈ G(k), there is a finite index subgroup � ⊂ � such
that cg(�) ⊂ �. It follows that c fv(δ(g))( fv(δ(�))) ⊂ fv(δ(�)) =
q◦ρ(�) ⊂ Gad(k).We get that, for each h ∈ fv(δ(�)), c fv(δ(g))(h) =
cσ( fv(δ(g))(h), meaning that σ( fv(δ(g))) ( fv(δ(g)))−1 �= 1 commutes
with fv(δ(�)). Since fv(δ(�)) has finite index in fv(δ(�)), it is
Zariski dense. Since Gad has trivial center, we get a contradiction.

Step 6 Let f = fv ◦ δ : G(k) → Gad(k). By Borel–Tits, there is a field
endomorphism α : k → k and a central isogeny ψ : αG → Gad

such that f = ψ ◦ α. Since the characteristic of k is zero, α is an
automorphism. The automorphism α defines a bijection on the set of
valuations of k by (α(w))(x) = w(α−1(x)). We claim that α(S) = S.
Proof:Note that by our assumption w ∈ S iff G(OS) is unbounded in
G(kv). Let w ∈ S. By our assumptions, G(OS) is unbounded in the w

valuation, soα(G(OS)) is unbounded in theα(w) valuation. Sinceψ is
a central isogeny, this implies that ψ(α(G(OS))) is unbounded in the
α(w) valuation. Since ψ(α(G(OS))) is commensurable to q(ρ(�))

and q(ρ(�)) ∩ Gad(OS) has finite index in q(ρ(�)), it follows that
Gad(OS) is unbounded in the α(w) valuation, so α(w) ∈ S.

Step 7 Let q : G → Gad be the quotient by the center from before. Let

q : G =
∏

w∈S
G(kw) →

∏

w∈S
Gad(kw) =

∏

w∈S
G(kw)/Z(G(kw)) = G/Z(G)

be the map induced by q. Then the composition �
ρ→ G(OS)

δ→
G

q→ G/Z(G) extends to a locally measure preserving map h : G →
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G/Z(G) (i.e., h ◦ δ = q ◦ δ ◦ ρ), whose kernel is Z(G).
Proof: For every w ∈ S, the map f : G(k) → Gad(k) is uniformly
continuous ifweput thew-topologyonG(k) and theα(w)-topologyon
Gad(k), so it extends to a continuousmap hw : G(kw) → Gad(kα(w)).
Let h : G → ∏

w∈S Gad(kw) = G/Z(G) be the product map. Each
hw is a composition of an isomorphism and a central isogeny, so it is
locally measure preserving. It is easy to see that h extends q ◦ δ ◦ ρ.

Step 8 We have [G(OS) : �] = [G(OS) : ρ(�)].
Proof: By Step 7, q(δ(ρ(�))) = h(δ(�)). We have

covolG/Z(G)(h(δ(�))) = covolG/Z(G)(h(δ(�)Z(G)))

= covolG(δ(�)Z(G)) = covolG(δ(�)) · [δ(�)Z(G) : δ(�)]
= covolG(δ(�)) · |Z(G)|,

where the first equality is because the kernel of h is Z(G), the second
is because h is locally measure preserving, the third is clear, and the
forth is because Z(G) ∩ δ(�) ⊂ δ(Z(�)) = 1. The same proof shows
that

covolG/Z(G)(q(δ(ρ(�)))) = covolG(δ(ρ(�))) · |Z(G)|,

which implies the claim.

This complete the proof Theorem 4.8. ��
Corollary 4.9 Let� be a groupwhich is abstractly commensurable to an irre-
ducible non-uniform higher-rank lattice. Let ρ : � → � be an endomorphism
with an infinite image. Then:

(1) ker ρ is finite.
(2) If ρ is injective then ρ is an automorphism.

Proof Margulis’ Arithmeticity Theorem implies that there exists a connected
absolutely simple group G defined over a number field k, a finite set of valua-
tions S which contains all archimedean ones such thatG(Kv) is unbounded for
every v ∈ S, and a finite index subgroup� ofG(OS) such that� is isomorphic
to a finite index subgroup of �. Margulis’ superrigidity theorem implies that
all finite index subgroups ofG(OS) are superrigid in

∏
v∈S G(kv). We identify

� with its image in �. There exists a finite index subgroup �1 of � such that
ρ(�1) ≤ �.

Since �1 has a finite index in �, ρ(�1) is infinite. Part (1) of Theorem 4.8
implies that ker ρ ∩ �1 is finite. Since �1 has a finite index in �, ker ρ is also
finite.
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Assume that ρ is injective. Part (2) of Theorem 4.8 implies that

[G(OS) : �][� : �1] = [G(OS) : �1] = [G(OS) : ρ(�1)]
= [G(OS) : �][� : ρ(�1)].

Thus, [� : �1] = [� : ρ(�1)] and [� : �1] = [� : �][� : �1] = [� : �][� :
ρ(�1)] = [� : ρ(�1)]. Since ρ is injective, [ρ(�) : ρ(�1)] = [� : �1] =
[� : ρ(�1)] and ρ is surjective. ��
Lemma 4.10 Let � be a group which is abstractly commensurable to an
irreducible non-uniform higher-rank lattice. Then

(1) FC(�) is finite.
(2) � is finitely presented.
(3) There exists a constant N such that every finite subgroup of � has a

normal abelian subgroup of index at most N .
(4) � contains a non-abelian free subgroup.

Proof � has a finite index subgroup � which is a lattice in a group of the form∏
Gi (Fi ). By passing to a finite index subgroup, we may assume that Gi are

connected. It follows that the projection of� to eachGi is Zariski dense. Since
conjugacy classes in Gi (Fi ) are either central or infinite, (1) follows.

For part (2), recall that lattices in semisimple groups (of characteristic zero)
are finitely presented and that finite presentability is preserved under abstract
commensurability. Part (3) is just Jordan’s theorem about finite linear groups
of characteristic zero. Part (4) follows from Tit’s alternative [32]. ��

We can now prove Theorem 4.3.

Proof of Theorem 4.3 By Theorem 2.4, we need to show that there is a gen-
erating set g1, . . . , gn and a formula φ(x1, . . . , xn) such that, for any tuple
(h1, . . . , hn) ∈ �n , if φ(�h) holds, then there is an automorphism of� sending
gi to hi for every 1 ≤ i ≤ n.

We are going to freely use the facts mentioned in Lemma 4.10. Find a
generating tuple g1, . . . gn and let r1, . . . , ra be the corresponding defining
relations. Let w1, . . . , wb be words such that {w1(�g), . . . , wb(�g)} is the set of
non-trivial elements in the maximal finite normal subgroup of�. Let N be the
constant defined in part (4) of Lemma 4.10. Since � contains a non-abelian
free subgroup, there are words u1, u2 such that [u1(�g)N , u2(�g)N ] �= 1. Let
φ(x1, . . . , xn) be the formula

(
[u1(�x)N , u2(�x)N ] �= 1

)
∧

⎛

⎝
a∧

j=1

r j (�x) = 1

⎞

⎠ ∧
⎛

⎝
∧

i≤b

wi (�x) �= 1)

⎞

⎠ .
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Assume that h1, . . . , hn ∈ � and φ(�h) holds. There exists an endomorphism
ρ : � → � that sends gi to hi for every 1 ≤ i ≤ n. Since [u1(�h)N , u2(�h)N ] �=
1, the images of the form ρ(ui (�g)) = ui (�h) are not contained in any finite
subgroup of �. Hence, the image of ρ is infinite.

Part (1) of Corollary 4.9 implies that ker(ρ) is finite, and hence contained in
{1} ∪ {w1(�g), . . . , wb(�g)}. By the definition of φ, we get that ρ is one-to-one.
Part (2) of Corollary 4.9 implies that ρ is an automorphism, confirming the
required condition. ��
Remark 4.11 The converse of Theorem 4.3, namely, that a prime lattice is
superrigid, is false: by [29], torsion-free cocompact lattices in SO(n, 1), n ≥ 3
are prime. It is well known that these lattices are not necessarily (and probably
never) superrigid.

Remark 4.12 Prime groups need not be first-order rigid. For example, any
cocompact lattice in Sp(n, 1) satisfies the assumptions of Theorem 4.8 (and
hence prime) but is not first order rigid by Theorem 7.6 of [29].

Remark 4.13 The crucial property needed in the proof of Theorem 4.3 above
is the property stated in Corollary 4.9: Every injective endomorphism of � is
an automorphism (� is said to be co-hopfian). This property does not hold for
positive characteristic higher rank lattices. For example, if F be a finite a field
and n ≥ 3 then SLn(F[t]) is supperrigid but it has many proper subgroups
that are isomorphic to itself, e.g., SLn(F[tm]) for every m ≥ 2. Nevertheless,
we can prove that SLn(F[t]) and all its finite index subgroups are prime and
first order rigid.

Remark 4.14 We thank the referee for the following remark. Suppose that �

is finitely generated, linear, just-infinite, and co-hopfian, and suppose that� is
universally equivalent to �. An argument similar to the proof of Theorem 4.3
shows that there is a monomorphism i : � → �. An argument similar to the
proof of Proposition 3.1 shows that there is a morphism j : � → � such that
j ◦ i is injective. It follows that � = � � N , for some group N .
In particular, if �1 and �2 are non-isomorphic, finitely generated, just-

infinite, co-hopfian, and linear groups, then their universal theories are
different.

5 Brenner property for higher-rank groups

Theorem 5.1 Let k be a global field and let S be a finite set of valuations,
containing all archimedean ones. Let G be a simple algebraic group over k
which is k-isotropic and has S-rank at least 2. Let P be a maximal proper
k-parabolic subgroup, and let � be a finite index subgroup of G(OS). There
is a constant C such that, for any non-central γ ∈ �, the set [γ � ∪ (γ −1)�]C
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contains a finite index subgroup of U ∩ � where U is the unipotent radical of
P.

Proof The claim essentially appears in the proof of Theorem 2.1 of [27]. We
sketch the argument. Fix a maximal k-split torus S contained in P . There is
a simple k-root α and an ordering of the simple k-roots such that P is the
parabolic corresponding to α and the positive roots. By [4, Sect. 5], there is
w ∈ NG(S)(k) that switches the positive and negative roots. The image of w

in the Weyl group is of order 2. This means that w2 ∈ CG(S), so Pw2 = P
(because CG(S) ⊂ P). In particular, P ∩ Pw is w-invariant. Let α′ = −w(α)

(soα′ is positive), let P ′ be the (maximal) parabolic corresponding toα′, and let
U ′ be its unipotent radical. By [4, Theorem 5.15], the map (u, b)

ϕ�→ uwb is a
k-isomorphism betweenU ′×P and an open dense set inG. By definition, ϕ−1

is also defined over k, so uwb ∈ G(k) implies that u ∈ U ′(k) and b ∈ P(k).
We first claim that there is a constant C1 such that [γ � ∪ (γ −1)�]C1 is

Zariski dense. Note that [γ � ∪ (γ −1)�]2 contains a Zariski-dense subset of
γ G · (γ −1)G and the later contains the identity. The conjugacy class γ G is
irreducible and has positive dimension, and, hence, so is [γ G · (γ −1)G]n ,
for all n ≥ 1. Note also that n �→ dim[γ G · (γ −1)G]n is non-decreasing.
If dim[γ G · (γ −1)G]n = dim[γ G · (γ −1)G]n+1, it follows that the Zariski
closures of [γ G · (γ −1)G]n and [γ G · (γ −1)G]n+1 coincide. Therefore, the
Zariski closure of [γ G · (γ −1)G]n is a normal subgroup of G, so it must be G.

Let u ∈ U ′ and b ∈ P such that uwb ∈ [γ � ∪ (γ −1)�]C1 and suppose that
x ∈ � ∩ P ∩ Pw satisfies [x, u] ∈ �. We consider the effect of conjugating
by x and by [x, u] := xux−1u−1 on the Bruhat decomposition of uwb:

(xux−1)w(xwbx−1) = xux−1xwbx−1 = x(uwb)x−1 ∈ [γ � ∪ (γ −1)�]C1

and

(xux−1)w(buxu−1x−1) = [x, u](uwb)[x, u]−1 ∈ [γ � ∪ (γ −1)�]C1 .

Taking the quotient,

xb−1(x−1)wbuxu−1x−1 ∈ [γ � ∪ (γ −1)�]2C1

as [γ � ∪ (γ −1)�]2C1 is closed to conjugation by elements of �,

b−1(x−1)wbuxu−1 ∈ [γ � ∪ (γ −1)�]2C1 . (1)

Note that U ′ is generated by rational positive roots so it is contained in P and
in particular u ∈ P . Since P ∩ Pw is w-invariant, our assumptions on x imply
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that every term in Eq. (1) is in P . Thus, the element in (1) is also contained in
P . Let

A = {
(u, b, x) ∈ U ′ × P × (P ∩ Pw) | uwb ∈ �, [x, u] ∈ �, x ∈ �

}

and let f : U ′ × P × (P ∩ Pw) → P be the function

f (u, b, x) = b−1(x−1)wbuxu−1.

We just showed that f (A) ⊂ [γ � ∪ (γ −1)�]2C1 . Let M be the connected
component of the Zariski closure of (P∩ Pw)(OS). We claim that A is Zariski
dense in U ′ × P × M . Indeed, the collection of (u, b) satisfying uwb ∈ � is
Zariski dense in U ′ × P , so it is enough to show that, for every u ∈ U ′(k),
the collection of x’s satisfying [x, u] ∈ � contains a finite index subgroup
of M(OS). After passing to a finite index subgroup, we can assume that �

is normal in G(OS). Consider the polynomial function x �→ [x, u]. It has
k-rational coefficients and maps 1 to 1. It follows that there is an ideal a of
OS such that, if x ∈ G(OS)(a), then [x, u] ∈ G(OS). Consider the map
c : M(OS)(a) ∩ � → G(OS)/� defined by c(x) = [x, u]�. Since [xy, u] =
xyuy−1x−1u−1 = x[y, u]x−1[x, u], it follows that c is a homomorphism.
Every element x in ker(c) (which has finite index in M(OS)(a)∩� and hence
in M(OS)) satisfies [x, u] ∈ �, which is what we wanted to prove.

It follows that, in the notation above, f (A) isZariski dense in f (U ′×P×M).
Hence, the Zariski closure of [γ � ∪ (γ −1)�]2C1 ∩ P contains f (U ′ × P ×M).
Denoting the Levi subgroup of P by L , [27, Lemma 2.8] says that the group
generated by f (U ′ × P × M) contains the identity component of the Zariski-

closure L(OS)
Z
of L(OS).

Let Ui , i = 1, . . . , N be the ascending central series of U . Each Ui/Ui+1

is a vector space on which P acts by conjugation. If v ∈ (Ui ∩�)/(Ui+1 ∩�)

and z ∈ f (A), then (Ad(z) − 1)v = [v, z] ∈ [γ � ∪ (γ −1)�]4C1 . We will use
the following simple lemma:

Lemma 5.2 Let k be a global field, O its ring of integers, and S a finite
set of valuations. For h1, . . . , ht ∈ GLn(OS) generating a subgroup H, the
following are equivalent:

(1) span
{
(h − 1)kn | h ∈ H

Z
}

= kn.

(2) span {(h − 1)kn | h ∈ H} = kn.
(3) There is no H-invariant linear functional on kn.
(4) span {(hi − 1)kn | 1 ≤ i ≤ t} = kn.
(5) (h1 − 1)On

S + · · · + (ht − 1)On
S has a finite index in On

S .

By [27, Claim 2.11], (L(OS)
Z
)0 acting on Ui/Ui+1 satisfies condition

(1). Since the Zariski closure of 〈 f (A)〉 contains (L(OS)
Z
)0, the action of
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〈 f (A)〉 also satisfies this condition. It follows that there are finitely many
elements h1, . . . , ht ∈ f (A) that satisfy the claim of the lemma. In particular,
[h1, (Ui ∩�)/(Ui+1 ∩�)]+ · · ·+ [ht , (Ui ∩�)/(Ui+1 ∩�)] has finite index
in (Ui ∩�)/(Ui+1∩�). By induction, it follows that [γ � ∪ (γ −1)�]4t NC1 ∩U
has finite index in U (OS) (and, hence, in U (OS) ∩ �). ��
Corollary 5.3 Let � be a group which is abstractly commensurable to an
irreducible non-uniform higher-rank lattice. There exits g ∈ � which has the
Brenner Property .

Proof Margulis’ Arithmeticity Theorem implies that � has a finite index
subgroup � which satisfies the assumptions of Theorem 5.1. We claim that
any element g ∈ � ∩ U of infinite order has the Brenner Property where
U is as in the statement of Theorem 5.1. Indeed, let D = 2ABC where
A := [� : �], B = |Z(�)| and C is the constant defined in Theorem 5.1.
Let h ∈ � and assume that |[h� ∪ h−1�]D| > D. Remark 2.8 implies that
|[h� ∪h−1�]AB | > AB so [h� ∪h−1�]2AB contains a non-central element of
�. The definition of C implies that [h� ∪ (h−1)�]2ABC contains a finite index
subgroup of 〈g〉. Since g has an infinite order, [h� ∪(h−1)�]2ABC ∩〈g〉 �= {1}.

��
Lemma 5.4 Let � be a group which is abstractly commensurable to an irre-
ducible higher-rank lattice. There exists a constant D such that any finitely
generated abelian subgroup of � is generated by at most D elements.

Proof Selberg’s lemma implies that any finitely generated linear group of
characteristic zero has a torsion free finite index subgroup. Thus, � has a
torsion free finite index subgroup which is an irreducible higher-rank lattice.
It is known [30] that such lattices have a finite cohomological dimension. Let
C be the cohomological dimension of �. Every finitely generated subgroup
of � has cohomological dimension at most C . The cohomological dimension
of Z

n is n so the rank of every finitely generated abelian subgroup of � is at
most C . Thus, the minimal number of generators of any abelian subgroup of
� is at most [� : �]C . ��

We can now prove Theorem 1.4:

Proof of Theorem 1.4 Theorem4.3,Lemma4.10,Corollary 5.3 andLemma5.4
show that � satisfies the conditions of Theorem 3.3. Hence � is first-order
rigid. ��

6 First-order rigidity is not commensurability invariant

The goal of this section is to show that first order rigidity is not preserved
by finite index subgroups nor by finite extensions. The key ingredient is the
following theorem of Oger:
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Theorem 6.1 ([23,24]) Let G and H be finitely generated finite-by-nilpotent
groups. Then G and H are elementarily equivalent if and only if G × Z and
H × Z are isomorphic.

Remark 6.2 The following theorems imply that elementary equivalence
classes of finitely generated nilpotent groups are finite:

(1) Baumslag [1] proved that if A, B,C and D are finitely generated groups
such that A × B ∼= C × D and B and D have the same finite quotients
then A and C have the same finite quotients.

(2) Pickel [26] proved that if G is a nilpotent group then the collection of
isomorphism classes of nilpotent groups with the same finite quotients as
G is finite.

We start by giving an example of a first order rigid group which has a
finite extension that is not first order rigid. The example follows Baumslag’s
construction [1] of non-isomorphic finitely generated groups with the same
finite quotients. Every finitely generated abelian group is first order rigid. In
particular, the infinite cyclic group Z is first order rigid. For every coprime
n,m ∈ N

+, let Cn be the cyclic group of order n and let ρm : Z → Aut(Cn)

be the homomorphism defined by ρm(1) := αm where αm is the automorphism
of Cn which sends each element to its m-th power. Define G6 := C25�ρ6Z

and G11 := C25�ρ11Z. Note that Z is isomorphic to a finite index subgroup
of G6, so it is enough to prove that G6 is not first order rigid.

Proposition 6.3 G6 is not first order rigid.

Proof For every i ∈ {6, 11}, the set T(Gi ) of torsion elements of Gi is a
subgroup of Gi which is isomorphic to C25. If g ∈ G and g T(Gi ) generates
Gi/T(Gi ) � Z then the conjugation action of g on T(Gi ) induces either α6
or α21 if i = 6 and α11 or α16 if i = 11. In particular, G6 and G11 are not
isomorphic. On the other hand the map ψ : G11 × Z → G6 × Z defined by
ψ(((r, s), t)) = ((r, 2s+5t), s+2t) is an isomorphism. Theorem 6.1 implies
that G6 is not first order rigid. ��

Our next goal it to show that G6 has a finite extension which is first order
rigid.

Lemma 6.4 Let M be a finite group such that all the automorphisms of M are
inner and define H1 := M × Z. Then H1 is first order rigid.

Proof Since H1 is finite-by-nilpotent every groupwhich is elementarily equiv-
alent to H1 is finite-by-nilpotent. Thus, Theorem 6.1 implies that it is enough
to show that if H1 × Z ∼= H2 × Z then H1 ∼= H2. Choose an isomorphism
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ι : H1 × Z → H2 × Z. Note that M and thus ι(M) are the torsion subgroups
of H1 × Z and H2 × Z. In particular, ι(M) ≤ H2. Thus,

Z × Z ∼= (H1/M)×Z ∼= (H1 × Z)/M ∼= (H2 × Z)/ι(M)=(H2/ι(M)) × Z.

The structure theorem of finitely generated abelian groups implies that Z ∼=
H1/M ∼= H2/ι(M). Thus, H2 ∼= M�δZ for some homomorphism δ : Z →
Aut(M). Since all the automorphisms of M are inner, H2 ∼= M × Z ∼= H1. ��
Proposition 6.5 G6 embeds as a finite index subgroup of a first order rigid
group.

Proof Embed C25�Aut(C25) in the symmetric group Sn for some n ≥ 7 and
recall that all the automorphism of Sn are inner for n �= 6. Every automorphism
of C25 is the restriction of an inner automorphism of C25�Aut(C25), in par-
ticular, every automorphism ofC25 is the restriction of an inner automorphism
of Sn . Define H := Sn�γ Z where γ : Z → Aut(Sn) is a homomorphism for
which γ (1) ∈ Aut(Sn) is an automorphism which preserves C25 and acts on
it as α6. Then, G6 can be identified as a finite index subgroup of H . Since all
the automorphisms of Sn are inner, H ∼= Sn × Z. Lemma 6.4 implies that H
is first order rigid. ��

7 Discussion and further questions

There are other model theoretic notions that are related to quasi axiomatiz-
ability. In [21], Nies gave the following definition:

Definition 7.1 A finitely generated group � is called quasi-finitely axiomati-
zable (or QFA for short) if there exists a first order sentence ψ such that every
finitely generated group that satisfies ψ is isomorphic to �.

It is clear that a QFA group is also QA. On the other hand, finitely generated
infinite abelian groups are QA but not QFA. Nies [21] proved that the free
step-2 nilpotent group of rank 2 is QFA. Oger and Sabbagh [25] proved that
a finitely generated nilpotent group � is QFA if and only if it is prime if and
only if Z(�) ⊆ �(�) where �(�) is the isolator of the commutator subgroup
of �,

�(�) := {g | ∃n > 0 such that gn ∈ [�, �]}.
Lasserre [14] gave a similar characterization of QFA for polycyclic groups.
Khelif [12] proved that a finitely generated groupwhich is bi-interpretablewith
the ringZ is prime andQFA.Lasserre [15] used this to prove that theThompson
groups T andF areQFA. It is interesting to understand the connections between
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the properties QA, QFA and prime. Nies [22] showed that there are 2ℵ0 finitely
generated prime groups. Since there are only countably many QFA groups, not
every finitely generated prime group is QFA. An explicit example of a finitely
generated prime group which is not even QA was given by Houcine [11] (see
also Remark 4.12 above). To the best of our knowledge, it is unknown whether
there exist prime groups which are QA but not QFA. In a sequel to this article
we will show that many non-uniform higher-rank arithmetic groups are in fact
QFA and we believe that all of them are. We will also show that many uniform
higher-rank arithmetic groups are first order rigid. At the moment, We do not
have a single example of a uniform higher-rank arithmetic group for which we
know whether it is QFA or not.

Question 7.2 Does there exist a uniform higher-rank arithmetic group which
is QFA?

A positive answer to Question 7.2 will give the first example (to the best of
our knowledge) of a QFA group which does not have a non-abelian solvable
subgroup.

All the higher-rank arithmetic groups for which we know to prove first
order rigidity have the congruence subgroup property. In fact, the proof of
first order rigidity relies on arguments which are used in the proof of the
congruence subgroup property. For example, the fact that non-uniform higher-
rank arithmetic groups have elements with the Brenner property follows from
Raghunathan’s proof of the congruence subgroup property. However, it should
be emphasized that Raghunathan’s proof yields more than what is actually
needed in order to prove the congruence subgroup property.With the notations
of Theorem 5.1, in order to prove first order rigidity we need the existence of
the constant C , while if one only wants to prove the congruence subgroup
property, it is enough to show that the normal subgroup generated by every
non-central element γ ∈ � contains a finite index subgroup of U ∩ �. We are
wondering if one can use the congruence subgroup property directly in order
to prove first order rigidity.

Question 7.3 Let � be an arithmetic group which has the congruence sub-
group property. Must � be first order rigid?

Note that the congruence subgroup property implies superrigidity (see [27]).
It is known that all lattices in Sp(n, 1)(R) are superrigid and arithmetic. It

follows from Sela’s results that the uniform ones are never first order rigid (see
Remark 4.12 above), and it is a wide open question whether these lattices have
the congruence subgroup property (Serre conjectured that rank-1 arithmetic
groups cannot have the congruence subgroup property). A positive answer to
Question 7.3 will show that these uniform lattices do not have the congruence
subgroup property and will give an indication that Serre’s conjecture is true.

123



First order rigidity of non-uniform higher rank 239

It is worth mentioning that if these groups do have the congruence subgroup
property, then an argument of the second author ( [16, 4.2]) shows that the
quotient of such a group with respect to the normal subgroup generated by
a random element is a hyperbolic group which is not residually finite. It is a
major open question whether such hyperbolic groups exist.

Whilewedonot know if superrigidiy togetherwith the congruence subgroup
property imply first order rigidity, we do know that superrigidiy together with
bounded generation imply first order rigidity (the proof will appear in a sequel
to this paper). It is known thatmanynon-uniformhigher-rank arithmetic groups
are boundedly generated (see [31], [8], and [19] for the state of the art), but
it is a wide open problem whether uniform higher-rank arithmetic groups are
boundedly generated. To the best of our knowledge, there is not even a single
example of a uniform higher-rank arithmetic where the answer to this question
is known. As all uniform higher-rank arithmetic groups are supperrigid and
many of them are indeed first order rigid, this leads to the following question:

Question 7.4 Are all uniform higher-rank arithmetic groups first order rigid?

This question is especially interesting in the cases where the congruence
subgroup property is not known.
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